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Abstract
This paper considers the optimal control of quantum systems. The
controlled quantum systems are described by the probability-density-matrix-
based Liouville–von Neumann equation. Using projection operators, the states
of the quantum system are decomposed into two sub-spaces, namely the ‘main
state’ space and the ‘remaining state’ space. Since the control energy is limited,
a solution for optimizing the external control force is proposed in which the
main state is brought to the desired main state at a certain target time, while
the population of the remaining state is simultaneously suppressed in order to
diminish its effects on the final population of the main state. The optimization
problem is formulated by maximizing a general cost functional of states and
control force. An efficient algorithm is developed to solve the optimization
problem. Finally, using the hydrogen fluoride (HF) molecular population
transfer problem as an illustrative example, the effectiveness of the proposed
scheme for a quantum system initially in a mixed state or in a pure state is
investigated through numerical simulations.

PACS number: 03.65.Ta

1. Introduction

The development and application of quantum control systems has attracted considerable
academic attention in recent years [1–3]. Utilizing the principles of optimal control theory,
various approaches have been developed for determining the control forces (laser pulses)
to drive the quantum systems described by the Schrödinger equation or the Liouville–von
Neumann equation in an optimal fashion in order to achieve a certain expected performance
[4–17]. The density matrix framework in Liouville space is an efficient representation for the
study of mixed-state quantum systems. The theory of optimal control in the density-matrix
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formulation and its application to the generalized Tannor-Rice pump-dump molecular control
scheme have been derived by Yan et al [7, 16]. To reduce the computational effort and increase
the convergence rate in the optimization procedure, a monotonically convergent algorithm was
developed which achieved the greatest transition probability from an initial state to an objective
state while minimizing the control force [11, 15]. Furthermore, an extended algorithm was
developed to treat another class of objective functionals for multiple target operations [17].
Meanwhile, a linear time-invariant (LTI) system for modelling a quantum system within
short-time approximations was also developed in which a classical and local optimal control
technique based on the so-called Riccati equation approach was derived [18]. However, this
treatment is not applicable to quantum systems within which the wave packets bifurcate since
these conditions prompt the mapping correlation between the wave packets and the classical
particle to break down.

In general, a surrogate system can be employed to represent the dynamics of a quantum
system using a lesser number of states [19, 20]. The states of the surrogate system can be
defined in terms of the states of the whole system. Specifically, the states which are strongly
coupled dominate the main dynamics of the quantum system, while those which are weakly
coupled can generally be ignored. Therefore, complex high- or infinite-dimensional quantum
systems can be represented by simplified low-dimensional models. It is worth noting, however,
that the populations of the remaining quantum states are few but nevertheless existent and affect
the control performance in a practical application. Consequently, a more effective approach
for modelling quantum systems is required.

The application of projection approaches to the study of non-equilibrium statistical
mechanics, no matter whether in classical or quantum systems, has been widely developed
[21–25]. This approach can be used to derive the master equations by using a reduced
density operator to describe the dynamics of a reduced system. Therefore, this technique
not only reduces the number of degrees of freedom, but also determines theoretically the
relationships between the quantum states of the reduced systems and those of the expanded
systems. Moreover, the influence of the weakly coupled states on the strongly coupled states
can be readily diminished by a suitably designed control field.

Drawing on the results of previous research, the present study commences from the
Liouville–von Neumann equation and investigates non-equilibrium mixed-state quantum
systems by means of the projection approach. Two projection operators are adopted, i.e.,
P and Q [21, 22]. These operators are employed to decompose the total state space of
the quantum system into two sub-spaces, i.e., the ‘main state’ space (by operator P) and
the ‘remaining state’ space (by operator Q). Since the control energy is limited, a solution
for optimizing the external control force is proposed in which the main state is brought to
the highest population at a certain target time, while the population of the remaining state
is simultaneously suppressed in order to diminish its effects on the final population of the
main state. The optimization problem is formulated by maximizing a general cost functional.
A global and efficient algorithm is developed for the optimization process by adopting and
modifying the entangled feedback algorithm introduced by Rabitz et al and Schirmer et al
[6, 11]. Finally, the proposed method is applied to an HF molecular system to investigate its
feasibility as an optimal control technique for selective vibrational state excitation.

The remainder of this paper is organized as follows. Section 2 presents the system
formulations, while section 3 introduces the optimal control design and derives the numerical
algorithm for the solution of the optimization process. Section 4 provides an illustrative
example of the optimal population transition control of an HF molecular system and
discusses the associated numerical simulation results. Finally, section 5 presents some brief
conclusions.
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2. System formulation

2.1. Liouville equation

Consider a quantum system described by the probability density operator, ρ̂(t), which evolves
with time according to the quantum Liouville or Liouville–von Neumann equation, i.e.,

∂

∂t
ρ̂(t) = −i

h̄
[Ĥ (t), ρ̂(t)] (1)

where Ĥ (t) is the total Hamiltonian of the system and the initial state is ρ̂(t0) = ρ̂0.
The relationship between the probability density operator in Hilbert space and in Liouville

space is generally established through the tetradic matrix [2]. Hence, the Liouville equation
can be expressed in a similar form to that of the Schrödinger equation, i.e.,

ih̄
∂

∂t
|ρ̂(t)〉〉 = L̂(t)|ρ̂(t)〉〉. (2)

The initial state of equation (2) is given by |ρ̂(t0) 〉〉 = |ρ̂0 〉〉, and L̂(t) is the Liouville
super-operator, which can be represented as a tetradic matrix.

A Liouville ket, |Â〉〉, and a Liouville bra, 〈〈Â|, can be defined for the bounded operator,
Â, evolved in Liouville space. The expected value of an observable Â is defined by the inner
product of |ρ̂(t)〉〉 and 〈〈Â| in Liouville space, i.e.,

〈Â〉 = Tr(Âρ̂(t)) = 〈〈Â|ρ̂(t)〉〉. (3)

Furthermore, the time evolution operator, Ŝ(t, t0), is defined for an arbitrary state |ρ̂(t)〉〉
such that

|ρ̂(t)〉〉 = Ŝ(t, t0)|ρ̂(t0)〉〉. (4)

Substituting equation (4) into equation (2) yields

ih̄
∂

∂t
Ŝ(t, t0) = L̂(t)Ŝ(t, t0). (5)

The operator Ŝ(t, t0) can be formally obtained as

Ŝ(t, t0) ≡ T+ exp

[−i

h̄

∫ t

t0

L̂(τ ) dτ

]
(6)

where T+ indicates an increasing time order from right to left [22, 24].
Similarly, the transpose conjugate of Ŝ(t, t0) can be derived as

Ŝ(t, t0)
† ≡ T− exp

[
i

h̄

∫ t

t0

L̂(τ ) dτ

]
(7)

where T− indicates an increasing time order from left to right.

2.2. Projection approach

This section develops a projection method for decomposing the state space of system (2) into
two sub-spaces, i.e., the ‘main quantum states’ space, also known as the ‘relevant’ system,
and the ‘remaining quantum states’ space, or the ‘irrelevant’ system.

Let P be the projection operator onto the sub-space composed of the ‘main quantum
states’, which are the principal focus of the present study. Furthermore, let Q be the projection
operator onto the remaining states, which are irrelevant. The operators P and Q satisfy the
following conditions:

P † = P, Q† = Q, P 2 = P, Q2 = Q, P + Q = I (8)
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and

PQ = QP = 0. (9)

Appling the projection operators P and Q to equation (5) yields

ih̄
∂

∂t
P Ŝ(t, t0) = P L̂(t)P Ŝ(t, t0) + P L̂(t)QŜ(t, t0) (10)

ih̄
∂

∂t
QŜ(t, t0) = QL̂(t)P Ŝ(t, t0) + QL̂(t)QŜ(t, t0). (11)

Multiplying equations (10) and (11) by the initial state, |ρ̂(t0)〉〉, and applying equation (4)
gives:

∂

∂t
P |ρ̂(t)〉〉 = P

(−i

h̄
L̂(t)

)
P |ρ̂(t)〉〉 + P

(−i

h̄
L̂(t)

)
Q|ρ̂(t)〉〉 (12)

∂

∂t
Q|ρ̂(t)〉〉 = Q

(−i

h̄
L̂(t)

)
P |ρ̂(t)〉〉 + Q

(−i

h̄
L̂(t)

)
Q|ρ̂(t)〉〉. (13)

The ‘main quantum states’ can be defined as |ρ̄(t)〉〉 by |ρ̄(t)〉〉 = P |ρ̂(t)〉〉, while the
‘remaining quantum states’ can be expressed as |ρ ′(t)〉〉 by |ρ ′(t)〉〉 = Q|ρ̂(t)〉〉. Utilizing the
completeness property of the projection operators P and Q, it can be shown that an arbitrary
mixed state of the quantum system is given by

|ρ̂(t)〉〉 = (P + Q)|ρ̂(t)〉〉 = |ρ̄(t)〉〉 + |ρ ′(t)〉〉. (14)

Furthermore equations (12) and (13) can be rewritten as

∂

∂t
|ρ̄(t)〉〉 = P

(−i

h̄
L̂(t)

)
|ρ̄(t)〉〉 + P

(−i

h̄
L̂(t)

)
|ρ ′(t)〉〉 (15)

∂

∂t
|ρ ′(t)〉〉 = Q

(−i

h̄
L̂(t)

)
|ρ̄(t)〉〉 + Q

(−i

h̄
L̂(t)

)
|ρ ′(t)〉〉. (16)

These equations can also be expressed in the following compact form

∂

∂t
|ρ(t)〉〉 ≡ ∂

∂t

[ |ρ̄(t)〉〉
|ρ ′(t)〉〉

]
= −i

h̄

[
P L̂ P L̂
QL̂ QL̂

] [ |ρ̄(t)〉〉
|ρ ′(t)〉〉

]
≡ −i

h̄
L(t)|ρ(t)〉〉. (17)

Equation (17) governs the dynamics of the ‘main quantum states’, |ρ̄(t)〉〉, and the
‘remaining quantum states’, |ρ ′(t)〉〉. Hence, this equation is the key equation for the optimal
control force design.

3. Optimal control design

3.1. Optimal control problem

Consider a quantum system represented by equation (1) with M external control linear forces.
The total Hamiltonian of this system can be expressed by

Ĥ (t) = Ĥ 0 +
M∑

m=1

um(t)Ĥm (18)

where Ĥ 0 is the Hamiltonian of the unperturbed system and Ĥm is the corresponding
interaction Hamiltonian with the control field, um(t).
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In this case, the corresponding Liouville super-operator is given by

L̂(t) = L̂0 +
M∑

m=1

um(t)L̂m. (19)

When the bounded and real-valued external control field is defined in the time interval
[t0, tF ] and the initial state |ρ̂0〉〉 is given, then the time evolution of the system states can be
solved by equation (2) or by equations (4) and (6). However, with the projection operators P

and Q, the main state, |ρ̄(t)〉〉, and the remaining state, |ρ ′(t)〉〉, can be determined by solving
equations (15) and (16).

This paper now considers the control problem associated with determining the bounded
external forces um(t), m = 1, . . . ,M within the time interval [t0, tF ], such that equation (2) is
satisfied subject to the following constraints, which are consolidated in the so-called optimal
criteria: (i) the control forces bring the main state to the desired target at a time tF ; (ii) the
control strengths are minimized as a result of the limited control energy; (iii) the populations
of the remaining states |ρ ′(tF )〉〉 at time tF are suppressed in order to diminish its effects on
the final population of the main state. These constraints can be summarized in the form of a
cost functional, i.e.,

J (ρ̄, ρ ′, u1, . . . , uM) = 〈〈Â|ρ̄(tF )〉〉 − 〈〈Â′|ρ ′(tF )〉〉 −
M∑

m=1

wm

2h̄

∫ tF

t0

[um(t)]2 dt (20)

where wm are weighting parameters, which indicate the relative concerns of the control forces,
Â are the observable quantities which are to be controlled and Â′ are the suppressed quantities.

For example, in the control of population transfers, a certain energy level |n〉 represents
the target state, i.e. Â, while the other states |l〉, l �= n, i.e. Â′, are to be restrained. Hence, the
choice of Â′ relies on the specific control goals. The optimal control can then be rewritten as

max J (ρ̄, ρ ′, u1, . . . , uM) subject to (15) and (16). (21a)

The constrained optimization problem of equation (21a) can be transformed into an
unconstrained case via the use of Lagrange multipliers. The Lagrangian function can be
expressed as follows:

L(ρ̄, ρ ′, u1, . . . , uM, λ1, λ2) = J (ρ̄, ρ ′, u1, . . . , uM)

+
∫ tF

t0

〈〈λ1(t)|F1(t)〉〉 dt +
∫ tF

t0

〈〈λ2(t)|F2(t)〉〉 dt (21b)

and

F1(t) = ∂

∂t
|ρ̄(t)〉〉 +

i

h̄
P L̂(t)[|ρ̄(t)〉〉 + |ρ ′(t)〉〉] = 0

F2(t) = ∂

∂t
|ρ ′(t)〉〉 +

i

h̄
QL̂(t)[|ρ̄(t)〉〉 + |ρ ′(t)〉〉] = 0

where |λ1(t)〉〉 and |λ2(t)〉〉 are quantum Lagrange multipliers.
To determine the necessary conditions which maximize the solution of equation (21b),

the calculus of variations for equation (21b) are taken with the initial conditions of states
|ρ̄(t0)〉〉 = |ρ̄0〉〉 and |ρ ′(t0)〉〉 = |ρ ′

0〉〉.

δL ≡ ∂L

∂|λ1(t)〉〉δ|λ1(t)〉〉 +
∂L

∂|λ2(t)〉〉δ|λ2(t)〉〉 +
∂L

∂|ρ̄(tF )〉〉
∣∣∣∣ tF δ|ρ̄(tF )〉〉

+
∂L

∂|ρ ′(tF )〉〉
∣∣∣∣ tF δ|ρ ′(tF )〉〉 +

∂L

∂|ρ̄(t)〉〉δ|ρ̄(t)〉〉 +
∂L

∂|ρ ′(t)〉〉δ|ρ
′(t)〉〉 +

∂L

∂u
δu.

(22)



934 C-J Cheng et al

Hence, the Euler–Lagrange equations can be obtained as


∂

∂t
|ρ̄(t)〉〉 +

i

h̄
P L̂(t)[|ρ̄(t)〉〉 + |ρ ′(t)〉〉] = 0

∂

∂t
|ρ ′(t)〉〉 +

i

h̄
QL̂(t)[|ρ̄(t)〉〉 + |ρ ′(t)〉〉] = 0

(23)

with |ρ̄(t0)〉〉 = |ρ̄0〉〉, |ρ ′(t0)〉〉 = |ρ ′
0〉〉[ |λ̇1(t)〉〉

|λ̇2(t)〉〉
]

+
i

h̄

[
L̂(t)P L̂(t)Q

L̂(t)P L̂(t)Q

] [ |λ1(t)〉〉
|λ2(t)〉〉

]
=
[

0
0

]
(24)

with [ |λ1(tF )〉〉
|λ2(tF )〉〉

]
=
[ |Â〉〉

−|Â′〉〉
]

(25)

um(t) = Re

(−i〈〈λ1(t)|P L̂m|ρ̄(t) + ρ ′(t)〉〉
wm

− i〈〈λ2(t)|QL̂m|ρ̄(t) + ρ ′(t)〉〉
wm

)
m = 1, 2, . . . ,M. (26)

Note that the state equation (equation (23)) evolves forward in time, while the adjoint
equation (equation (24)) evolves backwards. Equation (26) provides the control forces.

3.2. Numerical algorithm

This study adopts and modifies the entangled feedback algorithm developed by Rabitz et al and
Schirmer et al [6, 11] to solve the coupled equations (equations (23)–(26)). The procedures
of the numerical algorithm can be summarized as follows:

Step 0. Let the time interval [t0, tF ] be divided into F tiny sub-intervals of equal step size,
�t = tn+1 − tn = tF −t0

F
.

Step 1. Guess the initial control fields um(t) = u0
m(t), m = 1, 2, . . . , M , and substitute these

fields into equations (15) and (16), i.e.,

∂

∂t
|ρ̄(t)〉〉 = − i

h̄
P

(
L̂0 +

M∑
m=1

u0
m(t)L̂m

)
[|ρ̄(t)〉〉 + |ρ ′(t)〉〉] (27a)

∂

∂t
|ρ ′(t)〉〉 = − i

h̄
Q

(
L̂0 +

M∑
m=1

u0
m(t)L̂m

)
[|ρ̄(t)〉〉 + |ρ ′(t)〉〉] (27b)

with |ρ̄(t0)〉〉 = |ρ̄0〉〉 and |ρ ′(t0)〉〉 = |ρ ′
0〉〉.

The density evolutions |ρ̄0(t)〉〉 and |ρ ′0(t)〉〉 are solved by means of a symmetric split
operator method as shown below in Step 4 with a step size of �t .

Step 2. For the j th iteration (j � 1) and k = 0, 1, define

L̂j,k(t) ≡ L̂0 +
M∑

m=1

uj,k
m (t)L̂m, (28)

where

uj,k
m (t) = Re

{
− i
〈〈
λ

j

1(t)
∣∣P L̂m

∣∣ρ̄j−k(t) + ρ ′j−k(t)
〉〉

+ i
〈〈
λ

j

2(t)
∣∣QL̂m

∣∣ρ̄j−k(t) + ρ ′j−k(t)
〉〉

wm

}

(29)
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is derived from equation (26). The Lagrange multipliers (k = 1) and density operators
(k = 0) are then determined iteratively by the following equations deduced from equations (23)
and (24):

∂

∂t

∣∣λj

1(t)
〉〉 = − i

h̄

(
L̂j,1(t)P

∣∣λj

1(t)
〉〉

+ L̂j,1(t)Q
∣∣λj

2(t)
〉〉)

(30a)

∂

∂t

∣∣λj

2(t)
〉〉 = − i

h̄

(
L̂j,1(t)P

∣∣λj

1(t)
〉〉

+ L̂j,1(t)Q
∣∣λj

2(t)
〉〉)

(30b)

with
∣∣λj

1(tF )
〉〉 = |Â〉〉 and

∣∣λj

2(tF )
〉〉 = −|Â′〉〉

∂

∂t
|ρ̄j (t)〉〉 = − i

h̄
P L̂j,0(t)[|ρ̄j (t)〉〉 + |ρ ′j (t)〉〉] (31a)

∂

∂t
|ρ ′j (t)〉〉 = − i

h̄
QL̂j,0(t)[|ρ̄j (t)〉〉 + |ρ ′j (t)〉〉] (31b)

with |ρ̄j (t0)〉〉 = |ρ̄0〉〉 and |ρ ′j (t0)〉〉 = |ρ ′
0〉〉.

Step 3. The control fields of the j th iteration are calculated from equation (29) for k = 0:

uj
m(t) ≡ uj,0

m (t) = Re

{
−i
〈〈
λ

j

1(t)|P L̂m|ρ̄j (t) + ρ ′j (t)
〉〉

wm

− i
〈〈
λ

j

2(t)|QL̂m|ρ̄j (t) + ρ ′j (t)
〉〉

wm

}
.

(32)

Step 4. Calculate the variation of the cost functional for two successive iterations δJ j,j−1 by

δJ j,j−1 = 〈〈Â|ρ̄j (tF )〉〉 − 〈〈Â|ρ̄j−1(tF )〉〉 − 〈〈Â′|ρ ′j (tF )〉〉

+ 〈〈Â′|ρ ′j−1(tF )〉〉 +
M∑

m=1

wm

2h̄

∫ tF

t0

[
uj−1

m (t)
]2 − [

uj
m(t)

]2
dt. (33)

A symmetric split operator method is applied to solve |ρ̄j (t)〉〉 and |ρ ′j (t)〉〉, respectively,
i.e.,

(a) Using Ŝ(t, t0) of equation (6) and marching forward gives[ |ρ̄j (tn+1)〉〉
|ρ ′j (tn+1)〉〉

]
≈ exp

(
− i�t

2h̄
L0

)
exp

(
− i�t

2h̄
u

j,0
1 (τn)L1

)
· · · exp

(
− i�t

2h̄
u

j,0
M (τn)LM

)

× exp

(
− i�t

2h̄
u

j,0
M (τn)LM

)
· · · exp

(
− i�t

2h̄
u

j,0
1 (τn)L1

)
exp

(
− i�t

2h̄
L0

)

×
[ |ρ̄j (tn)〉〉

|ρ ′j (tn)〉〉
]

n = 0, 1, . . . , F − 1 (34)

where

Lm =
[

P L̂m P L̂m

QL̂m QL̂m

]
m = 0, 1, . . . , M.

(b) Using Ŝ(t, t0)
† of equation (7) and marching backward gives[|λj

1(tn)〉〉
|λj

2(tn)〉〉
]

≈ exp

(
i�t

2h̄
L†

0

)
exp

(
i�t

2h̄
u

j,1
1 (τn)L

†
1

)
· · · exp

(
i�t

2h̄
u

j,1
M (τn)L

†
M

)

× exp

(
i�t

2h̄
u

j,1
M (τn)L

†
M

)
· · · exp

(
i�t

2h̄
u

j,1
1 (τn)L

†
1

)

× exp

(
i�t

2h̄
L†

0

)[|λj

1(tn+1)〉〉
|λj

2(tn+1)〉〉

]
n = F − 1, F − 2, . . . , 0 (35)
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where 


τn = tn +
�t

2
= tn+1 − �t

2

uj,k
m

(
tn ± �t

2

)
≈ uj,k

m (tn) ± du
j,k
m (t)

dt

∣∣∣∣
tn

×�t

2

and

uj,k
m

(
tn ± �t

2

)
≈ uj,k

m (tn) ± 1

h̄wm

{〈〈
λ

j

1(tn)|P [L̂0, L̂m]|(ρ̄j−k(tn) + ρ ′j−k(tn))
〉〉

+
〈〈
λ

j

2(tn)|{Q[L̂0, L̂m]|(ρ̄j−k(tn) + ρ ′j−k(tn))
〉〉}× �t

2
(m = 1, 2, . . . ,M). (36)

Step 5. If δJ j,j−1 � ε and j � 150, where ε is a pre-specified positive and small constant,
then the iteration is terminated; otherwise the procedure returns to step 2.

4. An illustrative example

To investigate the performance of the proposed projection approach, this study investigates
the optimization control problem for a system of diatomic HF molecules described by the
Morse oscillator potential model or harmonic oscillator model with N vibrational states |n〉
corresponding to energy levels En [3, 8, 11].

The unperturbed part of the Hamiltonian operator is given by

Ĥ 0 =
N∑

n=1

En|n〉〈n| (37)

where

En = h̄ω0

(
n − 1

2

)[
1 − 1

2

(
n − 1

2

)
B

]
n = 1, 2, . . . <

1

B
+

1

2
(38a)

h̄ω0 = 2BD, B = h̄a√
2µD

(38b)

where B = 0.0419, D = 6.125 eV, ω0/2π = 7.8×1014 s−1, µ = 0.95 amu and dn = 0.097
√

n

Debye. Assume the diatomic molecular system is controlled by a single laser field, u(t).
Hence, the total Hamiltonian can be approximated by

Ĥ (t) = Ĥ 0 + u(t)Ĥ 1 (39a)

where Ĥ 1 = ∑N−1
n=1 dn(|n〉〈n + 1| + |n + 1〉〈n|) is chosen to be of the dipole form and dn

denotes the transition dipole moments.
The corresponding Liouville super-operator is given by

L̂(t) = L̂0 + u1(t)L̂1. (39b)

From equation (38a), it can be shown that the system has 24 vibrational states. To simplify
the analysis, the present study takes an HF molecule with four levels as a simplified model.
The initial density operator is given by a mixed state:

ρ̂(t0) =




0.3850 0 0 0
0 0.2758 0 0
0 0 0.1976 0
0 0 0 0.1416


 . (40)
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The criterion of controllability [12] pointed out this HF Morse oscillator model is completely
controllable. The control objective is to maximize the energy of the system; that is, to design
the external control field such that the population of the most energetic state |n = 4〉 at target
time tF = 200 (au) is maximized, the second most energetic state |n = 3〉 has the second
highest population, etc [8, 11].

According to the control objective and the kinematical bounds 〈Ĥ 0(tf )〉 � 2.2592h̄ω0

predicted theoretically in [8], the observable in the main state is specified as follows:

Â =




0 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 E4


 =




0 0 0 0
0 1.452 86 0 0
0 0 2.369 06 0
0 0 0 3.2434


 (41)

Meanwhile, let Â′ in equation (20) and (33) satisfy

Â′ = Â′
1 =




E1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 =




0.494 76 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 . (42)

The proposed projection approach is applied by using the following operators:

P =




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Q =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 (43)

with the conditions given in equations (40)–(42) and wm = 8. In this mixed-state case, states
|2〉, |3〉 and |4〉 are regarded as the main quantum states generated through the operation of P .
Moreover, in this case, we assumed the state |1〉 as a remaining state generated through the
operation of Q, and want to diminish its effect on the final population of the main states |2〉,
|3〉 and |4〉.

Figure 1 shows the control field with the conditions of equations (40)–(43). Meanwhile,
figure 2 depicts the corresponding time-evolution populations of each energy level of the
N = 4 quantum system when applying the proposed projection approach. The populations of
states |1〉, |2〉, |3〉 and |4〉 at the target time are 0.1490, 0.1993, 0.2756 and 0.3763, respectively.
The final energy is 2.2367h̄ω0 or about 99.01% of the kinematical upper bound. We carry out
similar simulations for a four-level Morse oscillator model initially in ground state:

ρ̂(t0) =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 . (44)

In this pure state case, to maximize the energy of the system is to attain a nearly complete
inversion of the populations so that the population of state |4〉 is close to 1. Thus, the observable
can be the population of state |4〉 and specified as follows:

Â =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 (45)

and the following projection operators are chosen:

P =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 , Q =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 . (46)
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Figure 1. Optimized control field for a mixed-state quantum system with wm = 8 (N = 4 Morse
oscillator).

Figure 2. Time evolution of populations for a mixed-state quantum system (N = 4 Morse
oscillator).
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Figure 3. Optimized control field for a pure state quantum system with wm = 4 (N = 4 Morse
oscillator).

State |4〉 is regarded as the main quantum state generated through the operation of P .
Furthermore, in this case, we considered the states |1〉, |2〉 and |3〉 as remaining states
generated through the operation of Q. Figure 3 shows the control field with the conditions of
equations (44)–(46) and wm = 4. Figure 4 depicts the corresponding time-evolution
populations of each energy level of the N = 4 quantum system. The population of state
|4〉 at the target time is approximately close to 0.993. Compared with the above-mentioned
completely controllable Morse oscillator model, we consider the HF molecular system as a
four-level harmonic oscillator model with the same E1 and E2 as equation (38a) but E3 and
E4 adjusted to achieve equal spacing of adjacent energy levels. This model is not completely
controllable and its kinematical upper bound is predicted by 〈Ĥ 0(tf )〉 � 2.3192h̄ω0 [8].
We perform numerical simulation for the system with an initial mixed state as given in
equation (40) and the observable Â and Â′ are chosen as follows, respectively:

Â =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 2.9693


 , Â′ =




0.494 76 0 0 0
0 1.452 86 0 0
0 0 0 0
0 0 0 0


 (47)

The projection operators are chosen as shown in equation (48).

P =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 , Q =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 . (48)

Figure 5 shows the optimal control field with the conditions of equations (40) and (47).
Figure 6 depicts the corresponding time-evolution populations of each energy level of the
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Figure 4. Time evolution of populations for a pure state quantum system (N = 4 Morse oscillator).

Figure 5. Optimized control field for a mixed-state quantum system with wm = 8 (N = 4
harmonic oscillator).
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Figure 6. Time evolution of populations for a mixed-state quantum system (N = 4 harmonic
oscillator).

N = 4 quantum system. The populations of states |1〉, |2〉, |3〉 and |4〉 at the target time are
0.1513, 0.1989, 0.2708 and 0.3789, respectively. The final energy is 2.295h̄ω0 or about 98.87%
of the kinematical upper bound, which may be dynamically realizable for a particular choice
of observable in this simulation. However, it is worth noting that kinematical attainability
does not imply dynamically reachable [8].

5. Conclusions

This paper has developed an optimal control approach for quantum systems which evolve in
Liouville space. Using projection operators, the states of the quantum system are decomposed
into two sub-spaces, namely the ‘main state’ space and the ‘remaining state’ space. Since the
control energy is limited, this study has proposed a solution for the optimization of the external
control force in which the main state is brought to the highest population at a certain target
time, tF , while the population of the remaining state is simultaneously suppressed in order
to diminish its effects on the final population of the main state. A numerical algorithm for
the optimization solution has also been presented and indicates its applicable potential of the
scheme by considering the energy maximization problem or state transition optimal control of
an HF molecular quantum system initially in pure state or mixed-state condition. We believe
that this proposed scheme in this study may provide as an alternative approach for the optimal
control of quantum systems and its effectiveness has been shown as good as that proposed
by [8, 11]. However, more efficient algorithms for the projection approach should be further
studied.
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